
4/3/2025 1

Technical Notes on LIFT used in FLEx
Ken Zook

April 3, 2025

Contents
Technical Notes on LIFT used in FLEx ... 1
1 Introduction .. 3
2 Header .. 4

 Ranges ... 4
 Fields ... 5

3 Basic elements ... 6
 Id, Guid.. 6

 Date and time .. 6
 Numbers .. 6
 Strings.. 7
 Custom fields... 8

4 References to entries and senses .. 8
 Lexical Relations ... 8

4.1.1 Collection .. 9

4.1.2 Pair .. 9
4.1.3 Pair – 2 relation names .. 10

4.1.4 Tree ... 10
4.1.5 Sequence/Scale ... 10
4.1.6 Unidirectional ... 11

 Variant entries ... 11

 Complex forms .. 13
 Minor entries ... 14

5 Entry elements ... 14

 Lexeme Form .. 15
 Is Abstract Form .. 15

 Morph Type ... 15
 Environments .. 15
 Stem Name .. 15
 Citation Form .. 15
 Dialect Labels (Entry) ... 16
 Complex Forms ... 16
 Components ... 17

 Variant of... 17
 Pronunciation .. 17
 Etymology ... 17
 Note ... 18

 Literal Meaning ... 19
 Bibliography .. 19
 Restrictions .. 19

 Summary Definition .. 19

Technical Notes on LIFT used in FLEx Page 2

4/3/2025

 Cross References ... 19

 Custom fields... 19

 Import Residue .. 20
 Date Created .. 20
 Date Modified ... 20
 Messages ... 20
 Variants ... 20

 Allomorphs .. 21
 Grammatical Info Details .. 21
 Publish Entry in ... 21
 Show as Headword in .. 21
 Subentries .. 21

 Referenced Complex Forms .. 22

6 Sense elements ... 22
 Gloss .. 22

 Reversal Entries... 22

 Definition .. 22
 Restrictions .. 23
 Grammatical Info. ... 23

 Dialect Labels (Sense) ... 23
 Complex Forms ... 23

 Referenced Complex Forms .. 24
 Subentries .. 24

 Variants of Sense ... 24

 Example ... 24
 Scientific Name ... 25

 Anthropology Note .. 25
 Bibliography .. 25

 Discourse Note .. 25
 Encyclopedic Info ... 25

 General Note ... 26
 Grammar Note ... 26
 Phonology Note ... 26

 Semantics Note .. 26
 Sociolinguistics Note... 26
 Extended Note ... 26

 Source .. 27
 Usages ... 27

 Sense Type .. 27
 Academic Domains ... 27
 Semantic Domains... 27
 Anthropology Categories .. 27
 Status ... 28

 Lexical Relations ... 28
 Custom Fields .. 28
 Import Residue .. 28

Technical Notes on LIFT used in FLEx Page 3

4/3/2025

 Publish Sense In .. 28

 Nested senses... 28

 Pictures .. 29
 Exemplar ... 30

7 Exporting LIFT data .. 30
8 Importing LIFT data .. 31

 Preparing LIFT data .. 32

 Importing LIFT data .. 34
9 LIFT differences between FLEx and WeSay .. 35
10 Validation .. 36

1 Introduction
LIFT (Lexicon Interchange FormaT) is an XML format for lexical information

(dictionaries). It was designed by SIL to provide a standard for transferring lexical data

between programs. FLEx, WeSay, Lexique Pro, and Dictionary App Builder are some of

the programs that use or export/import LIFT data. See https://github.com/sillsdev/lift-

standard for details of the LIFT standard. Although version 0.15 has been defined, at this

point programs are all using version 0.13. The description for this version is at

https://github.com/sillsdev/lift-standard/blob/master/lift_13.pdf. Note Lexique Pro does

not match these specifications for variant and subentries, so if you try to import into

FLEx, you’ll need to fix the links first.

In its current state, LIFT supports much of what’s in the FLEx lexicon, but it doesn’t

cover everything, and some things do not have enough detail to accurately keep track of

data during Send/Receive with WeSay, which currently uses LIFT. It’s unlikely that SIL

will pursue further development of LIFT.

LIFT export produces a simplified XML format of the lexical data in LIFT that may be

useful for further processing. LIFT import provides a way to import lexical data into

FLEx from a LIFT file. It can add new entries as well as modify existing entries. The

format is more complex than Standard Format (SFM) data, but it has the advantage of

providing more accurate structure of the FLEx data as well as a way to modify existing

entries.

The LIFT standard is fairly generic. FLEx has a specific way to store the FLEx model of

a lexicon into the LIFT standard. This document describes the specific way FLEx data is

represented in LIFT as of FieldWorks 9.1.5.

Here is a minimal LIFT file that would add a new entry for French ‘homme’ to FLEx via

File…Import…LIFT Lexicon.

<?xml version="1.0"?>

<lift version="0.13">

<entry id="e1">

<lexical-unit>

<form lang="fr"><text>homme</text></form>

</lexical-unit>

</entry>

</lift>

https://github.com/sillsdev/lift-standard
https://github.com/sillsdev/lift-standard
https://github.com/sillsdev/lift-standard/blob/master/lift_13.pdf

Technical Notes on LIFT used in FLEx Page 4

4/3/2025

All data in a LIFT file is stored in UTF-8 encoding using NFC normalization.

A LIFT file should always be stored in a folder that contains

• the .lift file containing lexical data,

• a .lift-ranges file containing various lists that are used by the data,

• a WritingSystems folder containing writing system .ldml files used in the LIFT file,

• a “pictures” folder containing pictures used in the LIFT file, and

• an “audio” folder containing audio and/or video files used in the LIFT file.

Everything other than the LIFT file are optional.

2 Header
The header element is optional in a LIFT file It provides a place to define fields that are

not built into the basic LIFT structure. It also allows a definition of lists that can be

referenced. A complete LIFT file for FLEx normally has these sections:

<?xml version="1.0"?>

<lift version="0.13">

<header>

<ranges>

…range elements

</ranges>

<fields>

…field elements

</fields

</header>

…entry elements

</lift>

 Ranges

The ranges element contains a list of range elements. Each range element has an id

attribute that lists the range name, and an href attribute that lists a full path to the lift-

ranges file that holds the range definition. Although full paths are specified, the file will

still open and work in other locations as well.

<range id="status" href="file://C:/Users/zook/Desktop/TLP/TLP.lift-ranges"/>

Range definitions can be stored directly in the LIFT file, but FLEx stores the definitions

in a separate .lift-ranges file. The file contains multiple list ranges and range-elements (or

list items). The range element has an id attribute that matches the id in the range elements

in the LIFT file.

Range-element has an id attribute which is the name of the item, and an optional guid

attribute which is the guid for the item. Range-element can have these elements, each

with one or more writing systems.:

• label: the name of the item.

• abbrev: the abbreviation of the item.

• description: the description of the item.

This is an abbreviated sample for a .lift-ranges file:

Technical Notes on LIFT used in FLEx Page 5

4/3/2025

<?xml version="1.0" encoding="UTF-8"?>

<lift-ranges>

<range id="semantic-domain-ddp4">

<range-element id="1 Universe, creation" guid="63403699-07c1-43f3-a47c-069d6e4316e5">

<label>

<form lang="en"><text>Universe, creation</text></form>

</label>

<abbrev>

<form lang="en"><text>1</text></form>

</abbrev>

<description>

<form lang="en"><text>Use this domain for general words referring to the physical universe.

Some languages may not have a single word for the universe and may have to use a phrase

such as 'rain, soil, and things of the sky' or 'sky, land, and water' or a descriptive phrase such

as 'everything you can see' or 'everything that exists'.</text></form>

</description>

</range-element>

… other range-elements

</range>

… other ranges

</lift-ranges>

Note that on import into FLEx, any references to range elements in senses and entries

will try to find an existing item in the FLEx list. If not found, a new item will be added to

the FLEx list, and the Import Log file will list the fact that a new item has been added to

the list.

 Fields

The fields element contains a sequence of field elements, or names, that are not covered

by the basic LIFT elements. The purpose of the fields element is to document fields that

are not in the basic LIFT standard. The fields element is not used during import, except

for FLEx custom fields. Without a field definition for a custom field, the import will

create a custom field in the target project, but it defaults to a MultiUnicode field with

kwsAnalVerns as the selector. With a field element for the custom field, it will add

missing custom fields with the desired types.

All field elements have a tag attribute that is the field name, and a form element that

gives information about the field in one or more writing systems.

<field tag="comment">

<form lang="en"><text>This records a comment (note) in a LexEtymology in

FieldWorks.</text></form>

</field>

FLEx custom fields add a special qaa-x-spec ‘writing system’ that includes the following

information in a text to specify the type of custom field being used.

• Class: The FLEx class name owning this field.

• Type” The FLEx basic object type (e.g., String, MultiUnicode, etc.) See Section 2.7

of

Technical Notes on LIFT used in FLEx Page 6

4/3/2025

https://downloads.languagetechnology.org/fieldworks/Documentation/FieldWorks_7_

XML_model.pdf for a list of possible types.

• WsSelector: The FLEx default writing system classification

 kwsAnal: The first analysis writing system

 kwsVern: The first vernacular writing system

 kwsAnals: All analysis writing systems

 kwsVerns: All vernacular writing systems

 kwsAnalVerns: All analysis then all vernacular writing systems

 kwsVernAnals: All vernacular then all analysis writing systems

<field tag="Custom Field">

<form lang="en"><text>This is a custom single line field</text></form>

<form lang="qaa-x-spec"><text>Class=LexEntry; Type=String;

WsSelector=kwsAnal</text></form>

</field>

3 Basic elements

 Id, Guid

Entries and senses require id fields. There is an exception where the entry id is not

needed if you have a guid attribute instead. Id fields can have any text as long as it is

unique in the LIFT file. Guid fields must have a valid guid. For creating a new file for

importing new entries, you could simply use e1, e2, … for entry ids and s1, s2,… for

sense ids. Any non-guid id will be converted to a guid during import.

The WeSay entry id used the lexeme form and a guid as the ID, FLEx continued that

tradition.

id="*hindoksa_016f2759-ed12-42a5-abcb-7fe3f53d05b0"

Entries also have a guid attribute which is used in FLEx as the primary ID.

guid="04758355-1e6c-49de-86f0-15d6347f25cd"

The sense id has always been a guid

id="1ac5aea9-038c-4e51-8655-02483a5e5f22"

References to entries and senses within the LIFT file use the id string.

 Date and time

Date and time are stored in this format, YYYY-MM-DDTHH:MM:SSZ using the time in

UTC.

dateCreated="2018-09-19T18:48:27Z"

Entries have a dateCreated attribute and a dateModified attribute.

 Numbers

Numbers, such as homorgraph fields, etc., are stored as a decimal number.

order="1"

value="1971"

https://downloads.languagetechnology.org/fieldworks/Documentation/FieldWorks_7_XML_model.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/FieldWorks_7_XML_model.pdf

Technical Notes on LIFT used in FLEx Page 7

4/3/2025

 Strings

The minimal string has a lang attribute with the writing system identifier, and a text

element containing the text.

<gloss lang="en"><text>English gloss</text></gloss>

Strings may contain embedded styles (defined in Format…Styles), writing systems

(defined in Format…Set up Writing Systems), etc. Embeddings are handled with the span

element embedded in the text element. This example shows an embedded span for the

French language using the Strong style.

<form lang="en"><text>English with français

embedded.</text></form>

A MultiUnicode field, such as gloss, that has multiple translations without embeddings is

shown by repeating the field. Note that even though you could add spans to these types of

fields, the text from the spans will be saved, but none of the attributes of spans will be

saved since embeddings are not allowed in the FLEx model.

<gloss lang="en"><text>English gloss</text></gloss>

<gloss lang="fr"><text>Gloss anglais</text></gloss>

A MultiString field, such as definition, that has multiple translations that can have

embeddings, is represented by a single field with multiple form elements. Note that

within a MultiString field, each form must have a unique writing system.

<definition>

<form lang="en"><text>A small red fruit.</text></form>

<form lang="fr"><text> Un petit fruit rouge.</text></form>

</definition>

External references to URLs can be embedded in a string using Edit...Paste Hyperlink.

This example can be used in Webonary to make a live link to an appendix in the

webonary dictionary. The href attribute in the span gives the URL, and a Hyperlink style

for the visible linked text.

<form lang="en"><text>(See Appendix 5: <span

href="https://www.webonary.org/tausug/language/appendices/plants/?lang=en"

class="Hyperlink">Plants)</text></form>

Edit…Copy Location as Hyperlink provides a way to link to an entry or other location in

another FLEx project. This uses a silfw: hyperlink which will open a project if not

already open, and jump to the target location.

<form lang="en"><text>See <span

href="silfw://localhost/link?database%3dthis%24%26tool%3dlexiconEdit%26guid%3d47359

e87-527f-4105-8589-029ed0a08532%26tag%3d" class="Hyperlink">cow

entry.</text></form>

Within FLEx, Shift+Enter forces a line break in a string by inserting a U+2028 LINE

SEPARATOR in the string. In a LIFT file, this is represented by an actual CR/LF in the

middle of a string. Any actual CR/LF in the middle of a string will be converted to a

LINE SEPARATOR on import.

Technical Notes on LIFT used in FLEx Page 8

4/3/2025

<form lang="en"><text>A note with a Shift+Return

in it.</text></form>

Note that in LIFT, you can embed things using spans in any string. However, actual

FLEx strings are defined in the model to allow embedding (String) and not allow

embedding (Unicode). If a LIFT file has embedding in a Unicode field, on import into

FLEx, the text will be kept, but all span hierarchy will be lost including styles, writing

systems, etc.

Note in XML strings you need to quote ampersand, less than, and greater than codes in

the string

& = &

< = <

> = >

 Custom fields

Field elements are used to define custom fields in the header, and to insert data in objects

following the header. Without a fields element, custom fields will be added to the project

on import, but will default to MultiUnicode with selector kwsAnalVerns. So if the target

project is missing the needed custom fields, you should include a fields element in the

header giving the desired specifications for the custom fields. See section 2.2 for more

information on fields.

This is a custom field definition in the header.

<header>

<fields>

<field tag="Cust Single Line">

<form lang="en"><text>This is a custom single line field</text></form>

<form lang="qaa-x-spec"><text>Class=LexEntry; Type=String;

WsSelector=kwsAnal</text></form>

</field>

</fields>

</header>

This inserts data in an entry.

<field type=" Cust Single Line ">

<form lang="en"><text>Data in custom field.</text></form>

</field>

4 References to entries and senses
There are three types of references to entries and senses in FLEx that will be discussed in

the sections below.

 Lexical Relations

Lexical relations are defined in the Lexical Relations list in the Lists area of FLEx. Each

relation contains a name, and some relations have a reverse name. The Reference set type

specifies whether this reference is between senses, entries, or both, and whether the

reference can have multiple references or not, and whether the order is important or not.

Technical Notes on LIFT used in FLEx Page 9

4/3/2025

References to Entries show up in the Cross References section of the entry. References to

senses show up in the Lexical Relations section of the sense. The examples given in this

section are all sense to sense relations, so would show up under Lexical Relations in the

sense.

Note: The ref attribute must have an existing target. LIFT import will not create any

objects to fulfill a reference. Any ref targets that cannot be located are simply ignored

without any indication that something went wrong. When ref targets are not found for

variants or complex forms, FLEx may hang and require Task Manager to kill the

program.

Note: If a relation type does not exist, a new type will be created in the Lexical Relation

list and used during the import.

4.1.1 Collection

Collection relations (e.g., synonyms) are stored as a sequence of relation elements with a

type attribute with the name of the lexical relation, and a ref attribute with the guid (for

sense) or id (for entry) of the other senses or entries. Each entry or sense will reference

the other items in the collection. These would be the links for a synonym set for good,

honorable, and respectable.

Note: The import process will try to unify the relation sets. For example, if you have a ref

b, and b ref c, the result will be a single relation set containing a, b, c. If collection

references overlap in a way that cannot be unified, the import log will list multiple

Combined Collections explaining what reference was added to some other set. If there are

many of these, the result will probably be very bad. In these cases, you should use a

Unidirectional type, or some other type other than Collection.

respectable (7c1d2aca-140c-4a2a-81f7-38a9061027c1) syn: good, honorable

<relation type="Synonyms" ref="6bb61874-125e-42e8-9f23-cbc119f39b91"/>

<relation type="Synonyms" ref="fcdf2612-4260-4042-af88-60432bc07bff"/>

good (6bb61874-125e-42e8-9f23-cbc119f39b91) syn: honorable, respectable

<relation type="Synonyms" ref="fcdf2612-4260-4042-af88-60432bc07bff"/>

<relation type="Synonyms" ref="7c1d2aca-140c-4a2a-81f7-38a9061027c1"/>

honorable (fcdf2612-4260-4042-af88-60432bc07bff) syn: good, respectable

<relation type="Synonyms" ref="6bb61874-125e-42e8-9f23-cbc119f39b91"/>

<relation type="Synonyms" ref="7c1d2aca-140c-4a2a-81f7-38a9061027c1"/>

4.1.2 Pair

Pair relations (e.g., antonyms) are stored as a relation element with a single type attribute

with the name of the lexical relation, and a ref attribute with the guid (for sense) or id (for

entry) of the other sense or entry. Each entry or sense will reference the other item in the

set. These would be the links for an antonym set for good, and bad.

good (6bb61874-125e-42e8-9f23-cbc119f39b91) ant: bad

<relation type="Antonym" ref="4e31faea-0916-4b14-9ac9-9b5b1bc5d326"/>

Technical Notes on LIFT used in FLEx Page 10

4/3/2025

bad (4e31faea-0916-4b14-9ac9-9b5b1bc5d326) ant: good

<relation type="Antonym" ref="6bb61874-125e-42e8-9f23-cbc119f39b91"/>

4.1.3 Pair – 2 relation names

Pair relations with two relation names (e.g., operator and operator of) are stored as a

relation element with a single type attribute with the name of the lexical relation, and a

ref attribute with the guid (for sense) or id (for entry) of the other sense or entry. Each

entry or sense will reference the other item in the set. These would be the links for an

operator set for pilot and plane.

pilot (8149fae6-22b6-42dd-9dd0-59245ffc9acb) op of: plane

<relation type="Operator of" ref="e64357e4-6f55-43bb-9643-beb69fec03e7"/>

plane (e64357e4-6f55-43bb-9643-beb69fec03e7) op: pilot

<relation type="Operator" ref="8149fae6-22b6-42dd-9dd0-59245ffc9acb"/>

4.1.4 Tree

Tree relations (e.g., part/whole) are stored as a sequence of relation elements with a type

attribute with the name of the lexical relation, and a ref attribute with the guid (for sense)

or id (for entry) of the other senses or entries. Each entry or sense will reference the other

items in the set. This example demonstrates two part/whole relations where house has

parts roof and room, and second, room has parts floor and furniture. A whole sense can

have any number of parts, but a part can only have one whole. This forms a tree hierarchy

of part/whole senses. Note that room is connected both as having parts floor and

furniture, but it also has a whole relationship to house.

house (40fc11e6-efe8-4ca7-b154-83ad2ca49335) pt: roof, room

<relation type="Part" ref="cf0d9191-4e19-4df3-a9d2-dd2884320024"/>

<relation type="Part" ref="1dd34f2b-c839-4477-a472-986200e65b6a"/>

roof (cf0d9191-4e19-4df3-a9d2-dd2884320024) wh: house

<relation type="Whole" ref="40fc11e6-efe8-4ca7-b154-83ad2ca49335"/>

room (1dd34f2b-c839-4477-a472-986200e65b6a) pt: floor, furniture; wh: house

<relation type="Part" ref="ea52559a-b492-475c-a226-bafb0b8ffa0a"/>

<relation type="Part" ref="063af53f-7b7f-40c2-bad5-4ff2862495fb"/>

<relation type="Whole" ref="40fc11e6-efe8-4ca7-b154-83ad2ca49335"/>

floor (063af53f-7b7f-40c2-bad5-4ff2862495fb) wh: room

<relation type="Whole" ref="1dd34f2b-c839-4477-a472-986200e65b6a"/>

furniture (ea52559a-b492-475c-a226-bafb0b8ffa0a) wh: room

<relation type="Whole" ref="1dd34f2b-c839-4477-a472-986200e65b6a"/>

4.1.5 Sequence/Scale

Sequence or scale relations (e.g., calendar or days of week) are stored as a sequence of

relation elements with a type attribute with the name of the lexical relation, and a ref

Technical Notes on LIFT used in FLEx Page 11

4/3/2025

attribute with the guid (for sense) or id (for entry) of the other senses or entries. Because

order is important in these elements, there is also an order attribute that starts at 1. Each

entry or sense will reference all items in the collection, including the current sense. The

difference from a collection is that these senses are always in a fixed order, and the

current item is always shown as part of the list. This example shows the links for a

calendar set of Monday, Tuesday, and Wednesday.

Monday (fd4b33d5-1be3-430b-b767-96caa9ffc8a4) cal: Monday, Tuesday, Wednesday

<relation type="Calendar" ref="fd4b33d5-1be3-430b-b767-96caa9ffc8a4" order="1"/>

<relation type="Calendar" ref="823397a9-9aef-4697-88b6-32a78b08d883" order="2"/>

<relation type="Calendar" ref="b537970e-5ba6-4f54-b4c9-24aeed08d27a" order="3"/>

Tuesday (823397a9-9aef-4697-88b6-32a78b08d883) cal: Monday, Tuesday,

Wednesday

<relation type="Calendar" ref="fd4b33d5-1be3-430b-b767-96caa9ffc8a4" order="1"/>

<relation type="Calendar" ref="823397a9-9aef-4697-88b6-32a78b08d883" order="2"/>

<relation type="Calendar" ref="b537970e-5ba6-4f54-b4c9-24aeed08d27a" order="3"/>

Wednesday (b537970e-5ba6-4f54-b4c9-24aeed08d27a) cal: Monday, Tuesday,

Wednesday

<relation type="Calendar" ref="fd4b33d5-1be3-430b-b767-96caa9ffc8a4" order="1"/>

<relation type="Calendar" ref="823397a9-9aef-4697-88b6-32a78b08d883" order="2"/>

<relation type="Calendar" ref="b537970e-5ba6-4f54-b4c9-24aeed08d27a" order="3"/>

4.1.6 Unidirectional

Unidirectional relations are a sequence of senses that are related in some way with the

current sense. Unlike all of the other relations, there is no automatic reverse relation

shown with this type. They are stored as a sequence of relation elements with a type

attribute with the name of the lexical relation, and a ref attribute with the guid (for sense)

or id (for entry) of the other senses or entries. As an example, a baby is related to a

mother, crib, and diaper in some way. Also mother is related to a baby, but not directly to

a crib or diaper. In this type, the reference from mother to baby requires a separate

related set.

baby (a29f302c-1500-439c-bc36-8b1911ca04e2) rel: mother, crib, diaper

<relation type="Related" ref="9758fd2d-9133-4d7d-baab-dfd8c0866f4e"/>

<relation type="Related" ref="28bbec67-0f82-4ebc-86f4-a0d8bbf34699"/>

<relation type="Related" ref="4777eb1a-d437-424c-88e3-47095b052524"/>

mother (9758fd2d-9133-4d7d-baab-dfd8c0866f4e) rel: baby

<relation type="Related" ref="a29f302c-1500-439c-bc36-8b1911ca04e2"/>

crib (28bbec67-0f82-4ebc-86f4-a0d8bbf34699) <no reference displayed>

diaper (4777eb1a-d437-424c-88e3-47095b052524) <no reference displayed>

 Variant entries

Variant entries in FLEx are full lexical entries, but are linked to the main entries.

Technical Notes on LIFT used in FLEx Page 12

4/3/2025

Note the variant element in LIFT represents allomorphs, not a variant relationship

between entries.

The variant entry has one or more relation elements with a _component-lexeme type

attribute. and a ref attribute with the guid (for sense) or id (for entry) of the main sense or

entry. An order attribute also records the printed order of the given relation, starting at 0.

There is also a trait element that has a variant-type name attribute and a value attribute

that holds the name of the variant type from the Variant Types list in the Lists area.

Note the main entry does not have any indication that it has variants.

mom (mom_a42eba12-a001-4fec-b987-f6842670c4ed) fr. var. of mother

<relation type="_component-lexeme" ref="mother_9056dc3f-d0e9-4bbb-87e3-4932ce55796f"

order="0">

<trait name="variant-type" value="Free Variant"/>

</relation>

mother (mother_9056dc3f-d0e9-4bbb-87e3-4932ce55796f) (fr. var. mom)

A variant entry can be a variant of multiple main entries. It’s not clear why the mainb

relation in this example has an is-primary trait. The variant can also include a comment as

indicated in the second example below. This summary information goes into

LexEntryRef_Summary and shows up in the Variant data entry section of main entries.

Note: Until LT-21075 is fixed, you will get error messages when finding main entries if

the entry id contains most Unicode characters, such as U+0331 diacritic. In some cases

this causes the import to simply hang without completion, requiring killing FLEx with

Task Manager to get out of the problem.

maina (maina_966bbd95-108f-41e4-866e-ade49fb40755) (fr. var. var)

mainb (mainb_0c34c932-bb12-4b8e-af3f-9d2838333201) (fr. var. var)

var (var_bf62078c-8cb8-4f83-8e1c-8db7c649107b) var fr. var. of maina, mainb

<relation type="_component-lexeme" ref="maina_966bbd95-108f-41e4-866e-ade49fb40755"

order="0">

<trait name="variant-type" value="Free Variant"/>

</relation>

<relation type="_component-lexeme" ref="mainb_0c34c932-bb12-4b8e-af3f-9d2838333201"

order="1">

<trait name="is-primary" value="true"/>

<trait name="variant-type" value="Free Variant"/>

<field type="summary">

<form lang="en"><text>Comment on variant</text></form>

</field>

</relation>

In FLEx, if the Show Minor Entry checkbox is unchecked, then the corresponding

relation has a trait element with a hide-minor-entry name attribute and 1 in the value

attribute.

<trait name="hide-minor-entry" value="1"/>

https://jira.sil.org/browse/LT-21075

Technical Notes on LIFT used in FLEx Page 13

4/3/2025

 Complex forms

Complex forms (frequently subentries) are full entries in FLEx. In the main entry, each

component reference is stored in a relation element with a _component-lexeme type

attribute, a ref attribute with the guid (for sense) or id (for entry) of the complex form

sense or entry, and an order attribute starting at 0 indicating the order of the components

in the display. It also contains a trait element with a complex-form-type name attribute,

and a value attribute set to the name of the complex form type item in the Complex Form

Types list in the Lists area. A trait element with an is-primary name attribute and a true

value attribute is included if the subentry is supposed to show under the referenced

headword in the relation element. In FLEx this is set in the Show Subentry under field.

Note: Until LT-21075 is fixed, you will get error messages when finding main entries if

the entry id contains most Unicode characters, such as U+0331 diacritic. In some cases

this causes the import to simply hang without completion, requiring killing FLEx with

Task Manager to get out of the problem.

unkissable (unkissable_1cf9ae39-b10f-4a6d-b0df-da6c48bc0150) (der. of un-, kiss, -

able, see under kiss)

<relation type="_component-lexeme" ref="un-_c5cc0bcc-61c5-4d4e-9a52-714c1d884f89"

order="0">

<trait name="complex-form-type" value="Derivative"/>

</relation>

<relation type="_component-lexeme" ref="kiss_2f59b915-deff-49ef-a505-665baa1ecb3a"

order="1">

<trait name="is-primary" value="true"/>

<trait name="complex-form-type" value="Derivative"/>

</relation>

<relation type="_component-lexeme" ref="-able_b818692a-259a-4535-be24-3580a3d40c80"

order="2">

<trait name="complex-form-type" value="Derivative"/>

</relation>

un- (un-_c5cc0bcc-61c5-4d4e-9a52-714c1d884f89) der. unkissable (see under kiss)

kiss (kiss_2f59b915-deff-49ef-a505-665baa1ecb3a) unkissable der.

-able (-able_b818692a-259a-4535-be24-3580a3d40c80) der. unkissable (see under kiss)

Complex forms (subentries) can be part of more than one main entry.

maina (maina_966bbd95-108f-41e4-866e-ade49fb40755) sub der.

mainb (mainb_0c34c932-bb12-4b8e-af3f-9d2838333201) sub der.

sub (sub_74fb2464-ce1d-4176-acf7-6ad887eca2de) (der. of maina, mainb)

<relation type="_component-lexeme" ref="maina_966bbd95-108f-41e4-866e-ade49fb40755"

order="0">

<trait name="is-primary" value="true"/>

<trait name="complex-form-type" value="Derivative"/>

</relation>

<relation type="_component-lexeme" ref="mainb_0c34c932-bb12-4b8e-af3f-9d2838333201"

order="1">

https://jira.sil.org/browse/LT-21075

Technical Notes on LIFT used in FLEx Page 14

4/3/2025

<trait name="is-primary" value="true"/>

<trait name="complex-form-type" value="Derivative"/>

</relation>

In FLEx, if the Show Minor Entry checkbox is unchecked, then the corresponding

relation has a trait element with a hide-minor-entry name attribute and 1 in the value

attribute.

<trait name="hide-minor-entry" value="1"/>

 Minor entries

Minor entries for variants or complex forms will show in the main dictionary if the Show

Minor Entry checkbox is checked at the bottom of the entry. When unchecked, the

corresponding relation element has a trait element with a hide-minor-entry name attribute

and 1 in the value attribute.

<trait name="hide-minor-entry" value="1"/>

5 Entry elements
Entries in FLEx can be main entries, variant entries, or complex forms. Each of these are

actual entries, but they are linked in special ways.

A lexical entry consists of the various entry fields, and any number of senses. This

section focuses on the entry fields. The entry element holds all information for an entry

and has the following start-tag attributes:

• dateCreated: date and time the entry was created

• dateModified: date and time the entry (including senses) was last modified

• dateDeleted: date and time the entry was deleted. If used, the entry must have a valid

guid, and a date that parses correctly. On import into FLEx, the designated entry will

be deleted.

• id: unique id used for referencing entries in the LIFT file. It normally consists of the

lexeme form and guid for the entry.

• guid: a guid identifying the LexEntry object in FLEx

• order: a homograph number for the entry, starting at 1.

All of these attributes are optional except the id. This is a typical entry start-tag for an

entry element.

<entry dateCreated="2021-03-24T15:51:45Z" dateModified="2021-03-24T15:52:11Z"

id="combine1_10bbb84e-7964-485e-bf94-7c618d2b07a9" guid="10bbb84e-7964-485e-bf94-

7c618d2b07a9" order="1">

This is a simple entry in LIFT that will add the entry and sense to the project on import.

<entry id="e1">

<lexical-unit>

<form lang="fr"><text>rouge</text></form>

</lexical-unit>

<sense id="s1">

<grammatical-info value="adjective"></grammatical-info>

<gloss lang="en"><text>red</text></gloss>

Technical Notes on LIFT used in FLEx Page 15

4/3/2025

<definition>

<form lang="en"><text>The color red.</text></form>

</definition>

</sense>
</entry>

The following entry in a LIFT import will delete the entry with the specified guid.

<entry guid="5ddc014a-b5e4-400d-8ad3-a812c32c8c17" dateDeleted="2000-01-

01T00:00:00Z">

</entry>

The following entry fields are ordered as they appear in the FLEx data entry fields.

 Lexeme Form

Lexeme forms are stored in a lexical-unit element that contains one or more form

elements listing the form in each writing system. Audio or video files can be referenced

using a special audio writing system. Only one file can be included in the audio writing

system. The file path is relative to the LinkedFiles\AudioVisual FLEx project directory,

so is typically just a file name. The audio writing system can handle .wav and .mp3 files.

<lexical-unit>

<form lang="krx"><text>wol</text></form>

<form lang="fr-Zxxx-x-audio"><text> 638277086107188840test.wav</text></form>

</lexical-unit>

 Is Abstract Form

LIFT does not support Is Abstract Form.

 Morph Type

The entry morpheme type is stored in a morph-type trait.

<trait name="morph-type" value="stem"/>

 Environments

The entry environments are stored in an environment trait.

<trait name ="environment" value="/ [C] _"/>

 Stem Name

Stem name can be chosen when a category in the Grammatical Info Details have stem

names defined. This applies both to the entry and allomorphs of the entry.

LIFT does not support Stem Name.

 Citation Form

Citation form is in a citation element with different writing systems in form elements.

<citation>

<form lang="krx"><text> kaawol</text></form>

</citation>

Technical Notes on LIFT used in FLEx Page 16

4/3/2025

 Dialect Labels (Entry)

Each dialect label is stored as a dialect-labels trait using the name of the dialect in the

Dialect Labels list in FLEx.

<trait name="dialect-labels" value="City"/>

 Complex Forms

In FLEx, a complex form (typically a subentry) is an entry that is linked to a main entry

via a complex form type object. In LIFT, this linkage is made via a relation element that

refers to the main entry or sense.

This is an example of mondongani that is a derivative of dongan. This is the complex

form entry:

<entry id="mondongani">

<lexical-unit>

<form lang="blz"><text>mondongani</text></form>

</lexical-unit>

<trait name="morph-type" value="stem"/>

<relation type="_component-lexeme" ref="dongan" order="0">

<trait name="is-primary" value="true"/>

<trait name="complex-form-type" value="Derivative"/>

<trait name="hide-minor-entry" value="1"/>

</relation>

</entry>

The relation element has attributes:

• type: the type of relation. Complex forms and variants both use the type

"_component-lexeme", which represents the LexEntryRef object in the FLEx model.

• ref: A link to another entry or sense id.

• order: order of the complex form when there is more than one for a given entry. The

order starts at 0.

Other child elements of a _component-lexeme relation:

• trait name="is-primary”: If this is present, and set to “true”, then it will generate a

subentry in a root-based view.

• trait name="complex-form-type; This identifies this relation as a complex form

relation, and gives the name of the Complex Form Type (e.g., Derivative).

• trait name="hide-minor-entry: Complex forms (typically subentries) will generate a

minor entry in the dictionary pointing to the main entry with the subentry unless this

trait is present with a value of “1”, which then blocks this minor entry from showing.

This is the main entry. Note that this entry does not have any reference to its complex

form entries. The links are only on the complex forms.

<entry id="dongan">

<lexical-unit>

<form lang="blz"><text>dongan</text></form>

</lexical-unit>

<trait name="morph-type" value="stem"/>

</entry>

Technical Notes on LIFT used in FLEx Page 17

4/3/2025

 Components

The Components field lists main entries for complex forms. LIFT does not support this

directly. It’s a side-effect of the one-way Complex Form links.

 Variant of

The Variant of field lists main entries for variant forms. LIFT does not support this

directly. It’s a side-effect of the one-wayVariant links.

 Pronunciation

Each pronunciation is stored in a pronunciation object. It may contain:

• Pronunciation: one or more forms in form elements.

• Media File and Label: one or more media elements with the file name in a href

attribute. The file name is relative to the project LinkedFiles\AudioVisual directory. It

may also have a label for the media file in a label element with one or more form

elements for the label string.

• CV Pattern: stored in a field element with a cv-pattern type attribute and form

element for the string.

• Tone: stored in a field element with a tone type attribute and form element for the

string.

• Location: A single location is stored in a location trait with the string in a value

attribute. Locations are referenced to items in the Locations list.

LIFT does not support Publish Pronunciation In.

<pronunciation>

<form lang="krx"><text>Pronunciation</text></form>

<form lang="krx-fonipa"><text>pronIpa</text></form>

<media href="apple.wav">

<label>

<form lang="en"><text>Pron label</text></form>

</label>

</media>

<field type="cv-pattern">

<form lang="en"><text>CVVCV</text></form>

</field>

<field type="tone">

<form lang="en"><text>High</text></form>

</field>

<trait name="location" value="jungle"/>

</pronunciation>

 Etymology

Each Etymology object is stored in an etymology element which may contain

• Preceding Annotation: stored in a field element with a preccomment type.

• Source Language: One or more languages from the Languages list with each one

having a trait named languages with the value attribute holding the language name.

Technical Notes on LIFT used in FLEx Page 18

4/3/2025

• Source Language Notes: stored in a field element with a languagenotes type with one

or more form elements specifying the writing system for each one.

• Source Form: stored in one or more form elements specifying the writing system for

each one.

• Gloss: stored in one or more gloss elements specifying the writing system for each

one.

• Following Comment: stored in a field of type comment with one or more form

elements specifying the writing system for each one.

• Bibliographic Source: stored in a field element with a bibliography type with one or

more form elements specifying the writing system for each.

• Etymology Note: stored in a field element with a note type with one or more form

elements specifying the writing system for each.

The etymology start-tag element may have obsolete type, and source attributes, but they

are ignored in import and not exported. These were probably used prior to the etymology

fields being expanded in FW8.3.

<etymology>

<form lang="krx"><text>source form</text></form>

<gloss lang="en"><text>English gloss</text></gloss>

<gloss lang="fr"><text> Gloss français</text></gloss>

<field type="comment">

<form lang="en"><text>English following comment</text></form>

<form lang="fr"><text> Commentaire suivant en français</text></form>

</field>

<field type="preccomment">

<form lang="en"><text>English preceding annotation</text></form>

</field>

<trait name="languages" value="German"/>

<trait name="languages" value="Swiss"/>

<field type="note">

<form lang="en"><text>English etymology note</text></form>

</field>

<field type="bibliography">

<form lang="en"><text>English bibliographic source</text></form>

</field>

<field type="languagenotes">

<form lang="en"><text>English source language notes</text></form>

</field>

</etymology>

 Note

This is for a note on an entry. It is actually stored in the Comment property on LexEntry

in fwdata, but has a Note label in data entry. This is stored in a note element with no

attribute, with one or more form elements with the text in each writing system.

<note>

<form lang="en"><text>English note</text></form>

<form lang="fr"><text> Note française</text></form>

</note>

Technical Notes on LIFT used in FLEx Page 19

4/3/2025

 Literal Meaning

A literal meaning for an Entry can be given in multiple writing systems using the field

element with literal-meaning type, and one or more form elements for text in each writing

system.

<field type="literal-meaning">

<form lang="en"><text>English literal meaning</text></form>

</field>

 Bibliography

A bibliography field for an Entry can be given in multiple writing systems using the note

element with a bibliography type attribute, and one or more form elements for text in

each writing system.

<note type=" bibliography ">

<form lang="en"><text>English bibliography</text></form>

</field>

 Restrictions

Restrictions for an Entry can be given in multiple writing systems using the note element

with a restrictions type attribute, and one or more form elements for text in each writing

system.

<field type=" restrictions ">

<form lang="en"><text>English restrictions</text></form>

</field>

 Summary Definition

A summary definition for an Entry can be given in multiple writing systems using the

field element with summary-definition type, and one or more form elements for text in

each writing system.

<field type=" summary-definition ">

<form lang="en"><text>English summary definition.</text></form>

</field>

 Cross References

A cross reference is stored as a relation element with a type attribute specifying the name

from the Lexical Relation list item, and a ref attribute storing the entry id of the target

entry. See section 4.1 for more information.

<relation type="Compare" ref="aa2_c259b83a-fb7b-494a-982c-7cd0beb3fde3"/>

 Custom fields

Custom fields on Entry are shown at this location. Custom fields are described in section

3.5

Technical Notes on LIFT used in FLEx Page 20

4/3/2025

 Import Residue

Import residue is stored in a field element with an import-residue type attribute. Only one

form element is allowed which can have embedded writing systems. This field is mainly

used in SFM import for fields that a user wants to keep, but there is no appropriate place

in the FLEx model to store it.

<field type="import-residue">

<form lang="en"><text>Entry import residue</text></form>

</field>

 Date Created

The date and time an entry is created is stored in the entry start-tag as a dateCreated

attribute.

dateCreated="2021-03-24T15:51:45Z"

 Date Modified

The last modification date and time an entry or owned senses was edited is stored in the

entry start-tag as a dateModified attribute.

dateModified="2021-03-24T15:52:11Z"

 Messages

Messages for Send/Receive communication are not stored in the fwdata file, and are not

supported by LIFT.

 Variants

In FLEx, a variant is an entry that is linked to a main entry via a variant type object. In

LIFT, this linkage is made via a relation element that refers to the main entry or sense.

This is an example of ebe-ebe that is a dialect variant of ebee. This is the variant entry:

<entry id="ebe-ebe">

<lexical-unit>

<form lang="blz"><text>ebe-ebe</text></form>

</lexical-unit>

<trait name="morph-type" value="stem"/>

<relation type="_component-lexeme" ref="ebee " order="0">

<trait name="variant-type" value="Dialectal Variant"/>

<trait name="hide-minor-entry" value="1"/>

</relation>

</entry>

The relation element has attributes:

• type: the type of relation. Variants and complex forms both use the type

"_component-lexeme", which represents the LexEntryRef object in the FLEx model.

• ref: A link to another entry or sense id.

• order: order of the variant when there is more than one for a given entry. The order

starts at 0.

Technical Notes on LIFT used in FLEx Page 21

4/3/2025

Other child elements of a _component-lexeme relation:

• trait name="variant-type; This identifies this relation as a variant relation, and gives

the name of the Variant Type (e.g., Dialectal Variant).

• trait name="hide-minor-entry: Variant forms will generate a minor entry in the

dictionary pointing to the main entry for the variant unless this trait is present with a

value of “1”, which then blocks this minor entry from showing.

This is the main entry. Note that this entry does not have any reference to its variant

entries. The links are only on the variant entry.

<entry id="ebee">

<lexical-unit>

<form lang="blz"><text>ebee</text></form>

</lexical-unit>

<trait name="morph-type" value="stem"/>

</entry>

 Allomorphs

Allomorphs, or alternate forms are stored in variant elements, one for each allomorph.

The allomorph can have multiple writing systems, each in a form element It also supports

an environment string in a trait named environment, and a morph type using a morph-

type trait. Allomorphs allow user custom fields.

LIFT does not support Is Abstract Form and Stem Name fields.

<variant>

<form lang="krx"><text>kaawool</text></form>

<trait name ="environment" value="/ [V] _"/>

<trait name="morph-type" value="stem"/>

[optional custom fields]

</variant>

 Grammatical Info Details

Grammatical Info Details on the entry level are not supported in LIFT. However, the

Grammatical Information on sense does have traits for these.

 Publish Entry in

Publish Entry information stored in FLEx is not supported in LIFT.

 Show as Headword in

Show as headword information stored in FLEx is not supported in LIFT.

 Subentries

This field on entries is not set directly in the LIFT file on the entry, but it comes from the

is-primary attribute of the _component-lexeme relation stored on the complex form. See

section 5.8.

Technical Notes on LIFT used in FLEx Page 22

4/3/2025

 Referenced Complex Forms

Referenced Complex Forms information stored in FLEX is not supported in LIFT.

6 Sense elements
Lexical entries may have any number of senses. Each sense is stored in a sense element.

The start-tag has these attributes:

• id: This is a unique id within the project. For a lift import this can be any unique

string, but once imported the id is always a guid.

• order: This is the sense order, starting at 0.

<sense id="c3569ffb-967b-4191-beaa-d92eb3a45166" order="0">

The following sense fields are ordered as they appear in the FLEx data entry fields.

 Gloss

The gloss for a sense is stored in a gloss element with a lang writing system attribute. It

can be repeated for any number of writing systems.

<gloss lang="en"><text>to.see</text></gloss>

<gloss lang="es"><text>comprender</text></gloss>

 Reversal Entries

In FLEx, reversal entries are stored in a ReversalIndex with pointers to senses (since

FW9.0.1). In LIFT, however, the reversal forms are stored in reversal elements in senses.

A reversal element has a form with a single reversal string and writing system. In other

words, you can’t have “house; bungalow” in a single entry.

<reversal type="en"><form lang="en"><text>house</text></form>

</reversal>

<reversal type="en"><form lang="en"><text>bungalo</text></form>

</reversal>

Reversal entries can be hierarchal. In LIFT, this is accomplished by nesting main

elements for owning elements up to the top level. This example has Buick under

American under car.

<reversal type="en"><form lang="en"><text>Buick</text></form>

<main>

<form lang="en"><text>American</text></form>

<main>

<form lang="en"><text>car</text></form>

</main>

</main>

</reversal>

 Definition

The definition is stored in a definition element with multiple form elements for each

writing system.

Technical Notes on LIFT used in FLEx Page 23

4/3/2025

<definition>

<form lang="en"><text>The English definition.</text></form>

<form lang="fr"><text> La définition anglaise.</text></form>

</definition>

 Restrictions

A restrictions field is stored in a note element with a restrictions type attribute, followed

by one or more form elements, one for each writing system.

<note type="restrictions">

<form lang="en"><text>These are English restrictions.</text></form>

<form lang="fr"><text> Ce sont des restrictions françaises.</text></form>

</note>

 Grammatical Info.

Grammatical information (part of speech, etc.) is stored in a grammatical-info element

with the value being the name of the category.

<grammatical-info value="noun">

</grammatical-info>

Grammatical information can also contain additional information on inflection class,

features and exception features. This additional information is stored on trait elements

with name and value. If the values for inflection-feature are not in the FLEx Inflection

Features list in Grammar, it will be ignored and listed as invalid data in the Import Log. If

a category is not present, it will be added and listed in the Import Log. If the inflection

class is not present in the category, it will be added to the category and noted in the

Import Log. If an exception-feature is not in the FLEx Exception “Features” list in

Grammar, it will be added and noted in the Import Log.

<grammatical-info value="noun">

<trait name="noun-infl-class" value="2nd nominal declension"/>

<trait name="inflection-feature" value="{artAgr}[gen:m]"/>

<trait name="exception-feature" value="Exception"/>

</grammatical-info>

 Dialect Labels (Sense)

Each dialect label is stored as a dialect-labels trait using the name of the dialect in the

value attribute.

<trait name="dialect-labels" value="Country"/>

 Complex Forms

In LIFT, complex forms on sense are identical to complex forms on entry (see section 5.8

for details), except the ref attribute of relation type="_component-lexeme" contains a

sense Id instead of an entry Id. The relation element is still stored on the complex form

entry. Nothing is stored in the sense.

Technical Notes on LIFT used in FLEx Page 24

4/3/2025

 Referenced Complex Forms

Referenced Complex Forms information stored in FLEx is not supported in LIFT.

 Subentries

This field on sense is not set directly in the LIFT file on the sense, but it comes from the

is-primary attribute of the _component-lexeme relation stored on the complex form. See

section 5.8.

 Variants of Sense

In LIFT, variants of sense are identical to variants on entry (see section 5.24 for details),

except the ref attribute of relation type="_component-lexeme" contains a sense Id instead

of an entry Id. The relation element is still stored on the variant entry. Nothing is stored

in the sense.

 Example

Examples are stored in an example element with an optional start-tag source attribute. If

this is present, and there is no Reference field, the source content is stored in the

Reference field on import. If source is included and there is a Reference field, on import,

the Reference field is used.

An example element may have the following elements:

• Example: The vernacular example sentence is stored in a form element, one for each

writing system.

• Translation: Example translations are stored in a translation element with a type

attribute in the start-tag with the full type name from the Translation Types list in the

Lists area, and one or more form elements, one for each writing system. Any number

of translation elements can be present in an example element.

• Type: In FLEx this is a chooser to select an item from the Translation Types list in

the Lists area. In LIFT this is stored in the type attribute in the start-tag.

• Reference: A reference for the example is stored in a note element with a reference

type attribute, and form element for the reference string. Multiple form elements are

not allowed in this field.

• Custom Example Fields: A custom field is stored in a field element with a type

attribute with the custom field name, and then form elements with the field content,

one for each writing system.

• Publish Example In is not supported in LIFT.

<example source="Example reference">

<form lang="krx"><text>Vernacular example.</text></form>

<translation type="Free translation">

<form lang="en"><text>English translation.</text></form>

<form lang="fr"><text>Traduction en français.</text></form>

</translation>

<note type="reference">

<form lang="en"><text>Example reference</text></form>

</note>

Technical Notes on LIFT used in FLEx Page 25

4/3/2025

<field type="Cust Field">

<form lang="krx-fonipa"><text>Custom IPA example</text></form>

<form lang="krx"><text>Custom example</text></form>

</field>

</example>

 Scientific Name

A scientific name is stored in a field element with a scientific-name type attribute, and a

single form field with the content.

<field type="scientific-name">

<form lang="en"><text>Scientific name</text></form>

</field>

 Anthropology Note

An anthropology note field is stored in a note element with an anthropology type

attribute, followed by one or more form elements, one for each writing system.

<note type="anthropology">

<form lang="en"><text>These are English anthropology notes.</text></form>

<form lang="fr"><text> Ce sont des notes d'anthropologie française.</text></form>

</note>

 Bibliography

A bibliography note field is stored in a note element with a bibliography type attribute,

followed by one or more form elements, one for each writing system.

<note type="bibliography">

<form lang="en"><text>English bibliography information.</text></form>

<form lang="fr"><text> Informations bibliographiques en français.</text></form>

</note>

 Discourse Note

A discourse note field is stored in a note element with a discourse type attribute, followed

by one or more form elements, one for each writing system.

<note type="discourse">

<form lang="en"><text>These are English discourse notes.</text></form>

<form lang="fr"><text> Ce sont des notes de discours en français.</text></form>

</note>

 Encyclopedic Info

An encyclopedic note field is stored in a note element with an encyclopedic type

attribute, followed by one or more form elements, one for each writing system.

<note type="encyclopedic">

<form lang="en"><text>This is English encyclopedic information.</text></form>

<form lang="fr"><text> Il s'agit d'informations encyclopédiques françaises.</text></form>

</note>

Technical Notes on LIFT used in FLEx Page 26

4/3/2025

 General Note

A general note field is stored in a note element without a type attribute, followed by one

or more form elements, one for each writing system.

<note>

<form lang="en"><text>These are English general notes.</text></form>

<form lang="fr"><text> Ce sont des notes générales françaises.</text></form>

</note>

 Grammar Note

A grammar note field is stored in a note element with a grammar type attribute, followed

by one or more form elements, one for each writing system.

<note type="grammar">

<form lang="en"><text>These are English grammer notes.</text></form>

<form lang="fr"><text> Ce sont des notes de grammaire française.</text></form>

</note>

 Phonology Note

A phonology note field is stored in a note element with a phonology type attribute,

followed by one or more form elements, one for each writing system.

<note type="phonology">

<form lang="en"><text>These are English phonology notes.</text></form>

<form lang="fr"><text> Ce sont des notes de phonologie françaises.</text></form>

</note>

 Semantics Note

A semantics note field is stored in a note element with a semantics type attribute,

followed by one or more form elements, one for each writing system.

<note type="semantics">

<form lang="en"><text>These are English semantic notes.</text></form>

<form lang="fr"><text> Ce sont des notes sémantiques anglaises.</text></form>

</note>

 Sociolinguistics Note

A sociolinguistics note field is stored in a note element with a sociolinguistics type

attribute, followed by one or more form elements, one for each writing system.

<note type="sociolinguistics">

<form lang="en"><text>These are English sociolinguistic notes.</text></form>

<form lang="fr"><text> Ce sont des notes sociolinguistiques française.</text></form>

</note>

 Extended Note

Extended notes are not supported in LIFT.

Technical Notes on LIFT used in FLEx Page 27

4/3/2025

 Source

Source information for a sense is stored in a note element with a source type attribute and

a single form element with the content.

<note type="source">

<form lang="en"><text>Source information</text></form>

</note>

 Usages

A usages domain reference is stored in a trait element with a usage-type name attribute,

and a value attribute with the usage name. These need to match items in the Usages list in

the FLEx Lists area. There can be any number of usages in a sense.

<trait name="usage-type" value="obsolete"/>

<trait name="usage-type" value="old-fashioned"/>

 Sense Type

A sense type reference is stored in a trait element with a sense-type name attribute, and a

value attribute with the sense type name. The name needs to match the name in the Sense

Types list in the FLEx Lists area. Only one is allowed.

<trait name="sense-type" value="figurative"/>

 Academic Domains

An academic domain reference is stored in a trait element with a domain-type name

attribute, and a value attribute with the academic domain name. These need to match

items in the Academic Domains list in the FLEx Lists area. There can be any number of

domain references in a sense.

<trait name="domain-type" value="language learning"/>

<trait name="domain-type" value="linguistics"/>

 Semantic Domains

A semantic domain reference is stored in a trait element with a semantic-domain-ddp4

name attribute, and a value attribute with the semantic domain abbreviation followed by

the name. These need to match items in the Semantic Domains list in the FLEx Lists area.

There can be any number of domain references in a sense.

<trait name ="semantic-domain-ddp4" value="1 Universe, creation"/>

<trait name ="semantic-domain-ddp4" value=" 9.1.2.5 Make"/>

 Anthropology Categories

An anthropology category reference is stored in a trait element with an anthro-code name

attribute, and a value attribute with the anthropology category abbreviation. These need

to match items in the Anthropology Categories list in the FLEx Lists area. There can be

any number of anthropology category references in a sense.

<trait name="anthro-code" value="231"/>

<trait name="anthro-code" value="240"/>

Technical Notes on LIFT used in FLEx Page 28

4/3/2025

 Status

A status reference is stored in a trait element with a status name attribute, and a value

attribute with the status name. The name needs to match the name in the Status list in the

FLEx Lists area. Only one is allowed.

<trait name="status" value="Tentative"/>

 Lexical Relations

A lexical relation is stored as a relation element with a type attribute specifying the name

from the Lexical Relation list item, and a ref attribute storing the sense id of the target

sense. See section 4.1 for more information.

<relation type="Antonym" ref="c259b83a-fb7b-494a-982c-7cd0beb3fde3"/>

 Custom Fields

Custom fields on Sense are shown in this location. Custom fields are described in section

3.5

 Import Residue

Import residue is stored in a field element with an import-residue type attribute. Only one

form element is allowed which can have embedded writing systems.

<field type="import-residue">

<form lang="en"><text>Sense import residue</text></form>

</field>

 Publish Sense In

Publish Sense In fields are not supported in LIFT.

 Nested senses

Senses may be nested inside of senses to any number of levels (within reason). Nested

senses are stored in subsense elements. All elements in senses are also available in

subsenses. The following example demonstrates this hierarchy

sense 1

sense 2

 sense 2.1

 sense 2.1.1

 sense 2.2

sense 3

<sense id="826f0312-53a2-42a6-b8ee-217b540d7b6d" order="0">

<grammatical-info value="verb">

</grammatical-info>

<gloss lang="en"><text>main sense 1</text></gloss>

<trait name="dialect-labels" value="City"/>

</sense>

<sense id="8b91a4cd-6e85-41d8-bc52-327afae7db79" order="1">

<grammatical-info value="verb">

Technical Notes on LIFT used in FLEx Page 29

4/3/2025

</grammatical-info>

<gloss lang="en"><text>main sense 2</text></gloss>

<subsense id="2485960d-4b79-45d5-ab9a-641c790b7bc6">

<grammatical-info value="verb">

</grammatical-info>

<gloss lang="en"><text>subsense 2.1</text></gloss>

<subsense id="a84eede2-f10f-45dd-bea2-98eb0fab2e75">

<grammatical-info value="verb">

</grammatical-info>

<gloss lang="en"><text>subsubsense 2.1.1</text></gloss>

</subsense>

</subsense>

<subsense id="3343777d-02e0-4372-b767-b4ca8615aeb6">

<grammatical-info value="verb">

</grammatical-info>

<gloss lang="en"><text>subsense 2.2</text></gloss>

</subsense>

</sense>

<sense id="f2b314f2-9844-4bcf-9ca4-ef451d3231c4" order="2">

<grammatical-info value="verb">

</grammatical-info>

<gloss lang="en"><text>main sense 3</text></gloss>

</sense>

 Pictures

Picture information is stored in an illustration element in a LIFT sense element. You can

have any number of illustration elements in a sense. The name of the picture file is stored

in an href attribute on illustration. This is the relative path to the picture from

LinkedFiles\Pictures, so it is normally just a file name. The Illustration element can also

hold a picture caption in any number of languages in a label element. Each language

(writing system) is stored in a separate form element with the writing system in a lang

attribute and the string content in a text element which may have embedded spans.

<illustration href="Picture 1293.jpg">

<label>

<form lang="en"><text>English caption with French

embedding.</text></form>

<form lang="fr"><text>French caption</text></form>

</label>

</illustration>

If the LIFT directory contains a “pictures” directory with a file specified in an illustration

href attribute, the file will be copied to the LinkedFiles\Pictures directory in FLEx so that

the picture will be displayed in FLEx. If a file specified in an illustration href is not in the

pictures directory, the file will not be copied to the LinkedFiles\Pictures directory.

However, the file path is still imported into a CmFile element and a CmPicture elelment

will be added to the LexSense that references the CmFile element. Thus, if you copy the

picture to the LinkedFiles\Pictures directory after the import, the picture will then show

in FLEx.

Technical Notes on LIFT used in FLEx Page 30

4/3/2025

If a file name is not specified in an href element, or it is a null string (e.g., href= ""), the

import will add a CmPicture element with the caption, but a CmFile element will not be

created. This is an unusual situation in FLEx in that it cannot be reproduced in the FLEx

UI, but it is a possible situation that can happen via SFM or LIFT imports.

Note: If a later LIFT import includes an illustration with a file specified in href, the

import will result in a new CmPicture and a CmFile object being created in FLEx

resulting in the LexSense owning two CmPicture elements. Pictures cannot be deleted in

bulk edit. If you plan to do this kind of import where FLEx already has a CmPicture

element with captions, make sure your LIFT import includes the captions in the form

element, and then delete the CmPicture element(s) from FLEx fwdata prior to the LIFT

import. This has the effect of adding a file to existing picture captions.

If you have a picture in FLEx and export that to LIFT, then replace the picture file name

in the LIFT file and import, the modified file with the option to “Import the conflicting

data and overwrite the current data”, the import will not change the existing CmPicture

and CmFile, but will add a new CmPicture and CmFile so that you will now have two

pictures for this sense.

Note that copyright and licensing information entered in FLEx 9.1.22 or later stores this

information as metadata in the picture file rather than in FLEx data. LIFT cannot specify

this information separately. Also, note that Publish Picture information in FLEx is not

supported in LIFT.

 Exemplar

An Exemplar form of a word that is discussed in this sense is stored in a field element

with an exemplar type attribute, followed by one or more form elements, one for each

writing system.

<field type="exemplar">

<form lang="fr"><text>pinandalahan</text></form>

</field>

7 Exporting LIFT data
To export LIFT data, there are two options available under File…Export, 1) Filtered

Lexicon LIFT 0.13 XML, and 2) Full Lexicon LIFT 0.13 XML. Neither option allows

you to select which fields you want to export, or which writing systems. It always exports

all writing systems, and it always exports all fields in entries and senses. The only

difference between the two is that the filtered version will only export entries that are in

the active filter, while the full version exports all entries.

When you choose a LIFT option from File…Export, it brings up an Export dialog. In this

dialog you can choose to have the LIFT folder opened after the export completes. It also

allows you to choose whether to copy picture and media files to the exported folder.

When you click Export, it brings up a Browse For Folder dialog. A LIFT file should

always be in a directory just for that file. You should never select a directory that

contains other files or folders in this dialog. It allows you to create a new folder for the

export, which is usually a good thing to do. The export will include other files and folders

Technical Notes on LIFT used in FLEx Page 31

4/3/2025

inside the folder you choose. If you pick a previous LIFT folder, it will ask if you want to

overwrite the data in that folder.

8 Importing LIFT data
One of the big advantages to LIFT import is the ability to merge LIFT data with an

existing FLEx project. Unlike SFM import, which imports SFM data without regard to

existing data, if prepared properly, LIFT import can add new entries or senses, but can

also merge changes into existing entries and senses. To merge into existing objects, the

LIFT file needs to use the guids of entries and senses that are already present in the FLEx

project. If the guids match, it will merge the LIFT data into the existing data. Otherwise,

it will add new entries or senses. When merging into an entry or sense,

• Any fields in the LIFT file that are not already present in the object will be added to

the existing object.

• Any data in the LIFT file that matches existing data already in the object will be

unchanged.

• Any fields already in the existing object but not in the LIFT file will remain

unchanged.

When importing into existing data, conflicts are possible. If a given entry has one

definition, and that entry in the LIFT data has a different definition, this will be a conflict

since the merge capability cannot merge two strings into one string in a field. There are

three options for resolving conflicts during a LIFT import. You must make one choice for

resolving all conflicts for the entire import.

1. Do not import conflicting data. With this option, the import would ignore the

definition from the LIFT file.

2. Import the conflicting data and overwrite current data. With this option, the import

would replace the existing definition with the one from the LIFT file.

3. Import the conflicting data into a new entry or sense. With this option, the import

would keep the current sense with its definition, but add a new sense to the entry with

the data from the LIFT file. When new entries or senses are created during this mode,

the Import Log file will list the new entries/senses that were created due to the

conflict with a report similar to this:

It contains live links that open the project in FLEx to the link chosen (when LT-

20790 is fixed).

Merge conflicts only occur where the field can only have one result. For a property

allowing multiple list items, such as semantic domains, you can’t have a conflict. If an

item exists in the list, it would not be changed. If an item from the LIFT file does not

match an existing item, the LIFT item is added to the field. Thus, a LIFT import cannot

remove existing items in lists or owned objects. There is a way for deleting an entire

Technical Notes on LIFT used in FLEx Page 32

4/3/2025

entry (using the dateDeleted attribute on entry, see section 5), but nothing at a lower

level.

LiftResidue. LIFT imports attempt to store any data from the LIFT file that cannot be

stored in normal FieldWorks objects so that a LIFT export will return the unused data.

This is an attempt to never lose additional information that other programs need when

using LIFT. FLEx does this by storing LiftResidue fields that will never get deleted via

the user interface.

An import of a WeSay LIFT file will normally have a ListResidue field for every entry

and sense similar to this for entry:

<LiftResidue>

<Uni><lift-residue id="chalèèc_00020a7a-6240-47a7-9dec-94ec76ce0a17"

dateCreated="2014-09-17T04:58:49Z" dateModified="2015-12-09T14:06:32Z"></lift-

residue></Uni>

</LiftResidue>

and this for sense:

<LiftResidue>

<Uni><lift-residue id="000520be-2da6-4251-8b32-ce68b25d96ab"></lift-

residue></Uni>

</LiftResidue>

If you don’t plan do other LIFT imports or exports on a project, you can reduce clutter by

deleting all of the LiftResidue elements. It can be done easily using regex, CC, etc. It is

always 3 lines with one Uni element encoding the unused information.

 Preparing LIFT data

Caution! Before importing a LIFT file, it should always be in a separate folder, which

may include folders for writing systems (WritingSystems), pictures (pictures), and

audio/visual files (audio). It may also include a .lift-ranges file that specifies the range

lists. The import process before FW9.1.10 copies all of the files in the current directory to

a temp directory, so it can waste a lot of time copying unnecessary files and directories,

and can give strange error messages saying the path or filename is too long if you try to

import a LIFT file directly from Documents, or some other heavily used directory. In

FW9.1.10 the import changed to just copy the files it needs (LT-20954). But you should

still keep all files related to a project in a LIFT directory for that project.

Caution! Any writing systems used in the LIFT file that are not present in the current

project will be added to the current project. Also, any list references that are missing from

the current project will be added to the appropriate list in the project. If the LIFT file uses

a custom field that is not defined in the current project, it will add the custom field to the

current project. Note if the LIFT file does not include a field definition for the custom

field, the import will still add a custom field, but the type of field may be incorrect. The

Import Log file will list any new writing systems and list items that are added during the

import.

When you import data without guids, the LIFT import will create new entries and senses

without modifying existing objects. All of the ids must be unique in a given file, but you

Technical Notes on LIFT used in FLEx Page 33

4/3/2025

are free to choose whatever ids you want. They will only be saved in LiftResidue. This

example would add a new entry with a sense.

<entry id="e1">

<lexical-unit>

<form lang="fr"><text>rouge</text></form>

</lexical-unit>

<sense id="s1">

<grammatical-info value="adjective"></grammatical-info>

<gloss lang="en"><text>red</text></gloss>

<definition>

<form lang="en"><text>The color red.</text></form>

</definition>

</sense>
</entry>

If you want to merge into an existing entry or sense, you need to use the guid attribute

rather than the id attribute to match the existing entry and sense. In this case, the entry id

field is not needed. LIFT import is an additive process. You can add new information or

modify some existing fields, but you can’t remove fields that are already in the FLEx

project. (LIFT import via Send/Receive can remove fields, but this option is not available

during File…Import.) This example would add a definition to the sense with the specified

id in the entry with the specified id.

<?xml version="1.0"?>

<lift version="0.13">

<entry guid="3c99c376-e6dc-45a5-aaa4-bde6808acdcb">

<sense id="85352e90-319f-4b63-98a3-ba3d9a094c52">

<definition>

<form lang="en"><text>female feline</text></form>

</definition>

</sense>

</entry>

</lift>

Caution: LIFT does not contain as much detail as a FLEx data file. As a result, some

things could produce undesirable alterations to your existing data (e.g., duplicate

examples, pronunciations, and undesirable changes to cross references and lexical

relations). So be cautious with LIFT imports into FLEx.

• When importing example sentence objects, since LIFT does not specify guids, the

only way an existing example can be matched is by the vernacular example string. If

it matches the vernacular example string in the LIFT file, it will assume the same

example. In this case, other fields for the example sentence (e.g., translations) can be

added. However, with translations, again there is no guid in LIFT, so the same thing

happens when adding a translation. If the translation string in the LIFT file matches

an existing translation string in the example, it will use the existing translation. If the

LIFT file has a different translation string, it will be added to the example as a new

translation. If the vernacular example field in the LIFT file does not match an existing

example sentence with the same vernacular example string, then the import will add

the LIFT example sentence as a new example sentence. As a result of this ambiguity,

Technical Notes on LIFT used in FLEx Page 34

4/3/2025

you can never change an existing vernacular example or translation string using LIFT

import, and any changes to these strings will result in new examples and translations

being added to the sense.

• Pronunciation objects work in a similar way, since LIFT does not include guids for

pronunciations. If the pronunciation form does not match an existing pronunciation, it

will be added as a new pronunciation object.

• In FLEx, it’s possible to have multiple lexical relation or cross reference sets of the

same type on a sense. For example, you can have a synonym set holding a, b, c, and

another one holding a and d. This prevents b and c being related to d. However, in

LIFT this distinction is lost. So a LIFT import can mess up these types of relations

Note when merging into existing entries, DateCreated and DateModified will be set to

the current time if not included in the LIFT file. That’s generally desirable for

DateModified, but not for DateCreated. So if you want to keep created dates, you’ll need

to add the date from the project into your LIFT file.

Note if you import just the citation form without a lexeme form, MoStemAllomorphs are

not created, and bulk edit entries will not show these citation forms, changing a morph

type is not possible, and some other oddities exist. If you do not want to import a lexeme

form, you should import a morph type as in this example which will create the

MoStemAllomorph to solve these potential problems.

<entry id="e1">

<citation>

<form lang="fr"><text>able</text></form>

</citation>

<trait name="morph-type" value="root"/>

</entry>

At times you may find it useful to export a LIFT file from FLEx, then remove much of

the data, especially examples, relations, and pronunciations so that the import will not

mess these up. Then add whatever information you want to the LIFT file and then import

that. This way you can add missing data to your FLEx project or alter existing data

without possibly corrupting your data by doing a full LIFT import.

 Importing LIFT data

It would be wise to make a backup of your FLEx project prior to an import in case the

results are not what you intended. Undo will not undo a LIFT import.

To import a LIFT file, choose File…Import..LIFT Lexicon. This brings up an

Import/Merge From LIFT file dialog. You need to select one of the three merge

strategies. If you want to skip importing any LIFT entry where the current modification

time matches the modification time in the LIFT file, then Check the Skip… checkbox. If

the checkbox is unchecked, it will merge the entries regardless of the modification time.

Finally, select the .lift file you want to import from a LIFT directory, then click OK.

When the import is completed, it adds a <projectname>-ImportLog.htm file in the LIFT

directory, and then opens it in your default browser to give you information on the

import.

Technical Notes on LIFT used in FLEx Page 35

4/3/2025

Prior to importing a LIFT file, FLEx validates the file and if it does not pass the

validation process, it gives a yellow error message. (See section 10 for the Relax NG

XML Schema file used to validate LIFT.) If you look at the details in the error message it

tries to give you useful information on why it failed. Unfortunately, when you close this

yellow dialog prior to LT-20792 being fixed, the import hangs FLEx and you have to kill

FLEx with the Task Manager.

During an import, when a picture or audio\visual file name is specified in an illustration

element for pictures, a media element for pronunciations, or an audio writing system for

lexeme form, example sentence, etc., the file name will be imported into FLEx fwddata.

If a corresponding file is included in the LIFT audio or pictures directory, the

corresponding file will be copied to the FLEx project LinkedFiles\Pictures directory for

picture files and LinkedFile\AudioVisual directory for audio/visual files.

9 LIFT differences between FLEx and WeSay
WeSay uses LIFT for its data storage. FLEx and WeSay can collaborate using

Send/Receive (S/R), but there are some limitations since FLEx uses a more robust data

model (fwdata file). During S/R, FLEx exports the lexicon to LIFT, and uses this data to

merge with a WeSay repository. After merging with the WeSay repository, it then

imports the data back into FLEx which uses an option that is not available in the FLEx

LIFT import dialog. It tries to make the FLEx project as close to the WeSay data as it

can. Note the caution in section 8.1 with examples, pronunciations, and references which

still applies in S/R.

Without using WeSay Send/Receive, FLEx can export a LIFT project and then WeSay

can open this LIFT project. FLEx can also import the WeSay LIFT file directly from the

WeSay project folder.

WeSay does not support many of the more advanced features of the FLEx dictionary

model. For areas it doesn’t support, it should not lose any LIFT data, but it will only

allow you to edit parts it understands.

WeSay does not have the concept of vernacular and analysis writing systems. It just has a

list of writing systems that can be assigned to fields as needed.

Some of the limitations are listed in section 8.1 above. Some other complications come

from WeSay using Word for the Lexeme Form, and Meaning for the Definition. These

issues are discussed in more detail in section 4.7 FLEx and WeSay compatibility issues in

FLEx…Help…Resources…Technical Notes on FieldWorks Send-Receive. This

document is also available from

https://downloads.languagetechnology.org/fieldworks/Documentation/Technical_Notes_

on_FieldWorks_Send_Receive.pdf.

There are other issues with custom fields, and list items which are handled in different

ways in WeSay and FLEx. With care, and some manual work on each end, it’s usually

possible to work around these issues.

https://downloads.languagetechnology.org/fieldworks/Documentation/Technical_Notes_on_FieldWorks_Send_Receive.pdf
https://downloads.languagetechnology.org/fieldworks/Documentation/Technical_Notes_on_FieldWorks_Send_Receive.pdf

Technical Notes on LIFT used in FLEx Page 36

4/3/2025

10 Validation
The Relax NG XML Schema (lift-0.13.rng) file is embedded in SIL.Lift.dll in the

FieldWorks program directory and is used for validating LIFT files. Here is the content

of the .rng file, in case you want to use this for verification prior to import, or for other

purposes.

<grammar datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:sch="http://purl.oclc.org/dsdl/schematron">

 <!-- need to define the normalization or lack thereof in keys especially in regard to whitespace -->

 <!-- == date or dateTime -->
 <define name="date.or.dateTime">
 <choice>
 <data type="date"/>
 <data type="dateTime"/>
 </choice>
 </define>

 <!-- == refid -->
 <define name="refid">
 <attribute name="ref"/>
 </define>

 <!-- == form-content -->
 <define name="form-content">
 <attribute name="lang"/>
 <!-- rfc 4646 -->
 <ref name="form-no-lang-content"/>
 </define>

 <define name="form-no-lang-content">
 <interleave>
 <element name="text">
 <ref name="span-content"/>
 </element>
 <zeroOrMore>
 <element name="annotation">
 <ref name="annotation-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- == span-content -->
 <define name="span-content">
 <interleave>
 <text/>
 <zeroOrMore>
 <element name="span">
 <ref name="inner-span-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- == inner-span-content -->
 <define name="inner-span-content">

Technical Notes on LIFT used in FLEx Page 37

4/3/2025

 <optional>
 <!-- rfc 4646 -->
 <attribute name="lang"/>
 </optional>
 <optional>
 <attribute name="href">
 <data type="anyURI"/>
 </attribute>
 </optional>
 <optional>
 <attribute name="class"/>
 </optional>
 <ref name="span-content"/>
 </define>

 <!-- === multitext-content -->
 <define name="multitext-content">
 <zeroOrMore>
 <element name="form">
 <ref name="form-content"/>
 <sch:rule context="form" >
 <sch:assert test="not(preceding-sibling::form[@lang=current()/@lang])">
 Forms should be in different langs.
 There is only one form with a given lang allowed in any parent element.
 </sch:assert>
 </sch:rule>
 </element>
 </zeroOrMore>
 </define>

 <!-- == URLRef-content -->
 <define name="URLRef-content">
 <attribute name="href">
 <data type="anyURI"/>
 </attribute>
 <optional>
 <element name="label">
 <ref name="multitext-content"/>
 </element>
 </optional>
 </define>

 <!-- === field-content -->
 <define name="field-content">
 <interleave>
 <ref name="multitext-content"/>
 <ref name="extensible-without-field-content"/>
 </interleave>
 <!-- problem should be same as extensible but without field -->
 <attribute name="type"/>
 <sch:rule context="field" >
 <sch:assert test="not(preceding-sibling::field[@type=current()/@type])">
 Fields should have different types.
 There is only one field with a given type allowed in any parent element.
 </sch:assert>
 </sch:rule>
 </define>

 <!-- === trait-content -->
 <define name="trait-content">
 <attribute name="name"/>
 <attribute name="value"/>

Technical Notes on LIFT used in FLEx Page 38

4/3/2025

 <zeroOrMore>
 <!-- !!! documentation has this labeled as status-->
 <element name="annotation">
 <ref name="annotation-content"/>
 </element>
 </zeroOrMore>
 </define>

 <!-- == annotation-content -->
 <define name="annotation-content">
 <ref name="multitext-content"/>
 <attribute name="name"/>
 <optional>
 <attribute name="value"/>
 </optional>
 <optional>
 <attribute name="who"/>
 </optional>
 <optional>
 <attribute name="when">
 <ref name="date.or.dateTime"/>
 </attribute>
 </optional>
 </define>

 <!-- ===================================== extensible-without-field-content -->
 <define name="extensible-without-field-content">
 <interleave>
 <optional>
 <attribute name="dateCreated">
 <ref name="date.or.dateTime"/>
 </attribute>
 </optional>
 <optional>
 <attribute name="dateModified">
 <ref name="date.or.dateTime"/>
 </attribute>
 </optional>
 <zeroOrMore>
 <element name="annotation">
 <ref name="annotation-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="trait">
 <ref name="trait-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- == extensible-content -->
 <define name="extensible-content">
 <interleave>
 <ref name="extensible-without-field-content"/>
 <zeroOrMore>
 <element name="field">
 <ref name="field-content"/>
 </element>
 </zeroOrMore>
 </interleave>

Technical Notes on LIFT used in FLEx Page 39

4/3/2025

 </define>

 <!-- == note-content -->
 <define name="note-content">
 <optional>
 <attribute name="type"/>
 </optional>
 <sch:rule context="note" >
 <sch:assert test="not(preceding-sibling::note[@type=current()/@type])">
 Notes should be of different types.
 There is only one note with a given type allowed in any parent element.
 </sch:assert>
 </sch:rule>
 <interleave>
 <ref name="multitext-content"/>
 <ref name="extensible-content"/>
 </interleave>
 </define>

 <!-- === pronunciation-content -->
 <define name="pronunciation-content">
 <interleave>
 <ref name="multitext-content"/>
 <ref name="extensible-content"/>
 <zeroOrMore>
 <element name="media">
 <ref name="URLRef-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- === etymology-content -->
 <define name="etymology-content">
 <attribute name="type"/>
 <attribute name="source"/>
 <interleave>
 <ref name="extensible-content"/>
 <zeroOrMore>
 <element name="form">
 <ref name="form-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="gloss">
 <ref name="form-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- == grammatical-info-content -->
 <define name="grammatical-info-content">
 <attribute name="value"/>
 <zeroOrMore>
 <element name="trait">
 <ref name="trait-content"/>
 </element>
 </zeroOrMore>
 </define>

 <!-- == reversal-content -->

Technical Notes on LIFT used in FLEx Page 40

4/3/2025

 <define name="reversal-content">
 <optional>
 <attribute name="type"/>
 </optional>
 <interleave>
 <ref name="multitext-content"/>
 <optional>
 <ref name="reversal-main"/>
 </optional>
 <optional>
 <element name="grammatical-info">
 <ref name="grammatical-info-content"/>
 </element>
 </optional>
 </interleave>
 </define>

 <!-- === reversal-main -->
 <define name="reversal-main">
 <element name="main">
 <sch:rule context="main">
 <sch:assert test="parent::*/form">
 A main should not exist without a parent form
 </sch:assert>
 </sch:rule>
 <interleave>
 <ref name="multitext-content"/>
 <optional>
 <ref name="reversal-main"/>
 </optional>
 <optional>
 <element name="grammatical-info">
 <ref name="grammatical-info-content"/>
 </element>
 </optional>
 </interleave>
 </element>
 </define>

 <!-- === translation-content -->
 <define name="translation-content">
 <ref name="multitext-content"/>
 <optional>
 <attribute name="type"/>
 <!-- back | free | literal -->
 </optional>
 <sch:rule context="translation" >
 <sch:assert test="not(preceding-sibling::translation[@type=current()/@type])">
 Translations should be of different types.
 </sch:assert>
 </sch:rule>
 </define>

 <!-- === example-content -->
 <define name="example-content">
 <optional>
 <attribute name="source"/>
 <!-- a key-->
 </optional>

 <interleave>
 <ref name="multitext-content"/>

Technical Notes on LIFT used in FLEx Page 41

4/3/2025

 <ref name="extensible-content"/>
 <zeroOrMore>
 <element name="translation">
 <ref name="translation-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="note">
 <ref name="note-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- == relation-content -->
 <define name="relation-content">
 <!-- @ref is a @type relation of parent-->
 <attribute name="type"/>
 <ref name="refid"/>
 <optional>
 <attribute name="order">
 <data type="integer"/>
 </attribute>
 </optional>

 <interleave>
 <ref name="extensible-content"/>

 <optional>
 <element name="usage">
 <ref name="multitext-content"/>
 </element>
 </optional>
 </interleave>
 </define>

 <!-- === variant-content -->
 <define name="variant-content">
 <optional>
 <ref name="refid"/>
 </optional>

 <interleave>
 <ref name="extensible-content"/>
 <ref name="multitext-content"/>

 <zeroOrMore>
 <element name="pronunciation">
 <ref name="pronunciation-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="relation">
 <ref name="relation-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- === sense-content -->
 <define name="sense-content">
 <!--Handbook of Lexicography:

Technical Notes on LIFT used in FLEx Page 42

4/3/2025

 a sense is a hypothesis that one meaning has derived from a previous meaning
 (i.e. the meanings are semantically related but have a distinct central meaning).-->
 <optional>
 <attribute name="id"/>
 </optional>
 <optional>
 <attribute name="order">
 <data type="integer"/>
 </attribute>
 </optional>

 <interleave>
 <ref name="extensible-content"/>
 <optional>
 <element name="grammatical-info">
 <ref name="grammatical-info-content"/>
 </element>
 </optional>
 <zeroOrMore>
 <element name="gloss">
 <ref name="form-content"/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="definition">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <zeroOrMore>
 <element name="relation">
 <ref name="relation-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="note">
 <ref name="note-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="example">
 <ref name="example-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="reversal">
 <ref name="reversal-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="illustration">
 <ref name="URLRef-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="subsense">
 <ref name="sense-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- === entry-content -->

Technical Notes on LIFT used in FLEx Page 43

4/3/2025

 <define name="entry-content">
 <optional>
 <attribute name="id"/>
 </optional>
 <optional>
 <attribute name="guid"/>
 </optional>
 <optional>
 <attribute name="order">
 <data type="integer"/>
 </attribute>
 </optional>
 <optional>
 <attribute name="dateDeleted">
 <ref name="date.or.dateTime"/>
 </attribute>
 </optional>

 <interleave>
 <ref name="extensible-content"/>
 <optional>
 <element name="lexical-unit">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <optional>
 <element name="citation">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <zeroOrMore>
 <element name="pronunciation">
 <ref name="pronunciation-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="variant">
 <ref name="variant-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="sense">
 <ref name="sense-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="note">
 <ref name="note-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="relation">
 <ref name="relation-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="etymology">
 <ref name="etymology-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

Technical Notes on LIFT used in FLEx Page 44

4/3/2025

 <!-- == field-defn-content -->
 <define name="field-defn-content">
 <ref name="multitext-content"/>
 <attribute name="tag"/>
 </define>

 <!-- === field-defns-content -->
 <define name="field-defns-content">
 <zeroOrMore>
 <element name="field">
 <ref name="field-defn-content"/>
 </element>
 </zeroOrMore>
 </define>

 <!-- === range-element-content -->
 <define name="range-element-content">
 <attribute name="id"/>
 <optional>
 <!-- refers to another range-element's id -->
 <attribute name="parent"/>
 </optional>
 <optional>
 <attribute name="guid"/>
 </optional>
 <interleave>
 <optional>
 <element name="description">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <optional>
 <element name="label">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <optional>
 <element name="abbrev">
 <ref name="multitext-content"/>
 </element>
 </optional>
 </interleave>
 </define>

 <!-- === range-content -->
 <define name="range-content">
 <attribute name="id"/>
 <optional>
 <attribute name="href">
 <data type="anyURI"/>
 </attribute>
 </optional>
 <optional>
 <attribute name="guid"/>
 </optional>
 <interleave>
 <optional>
 <element name="description">
 <ref name="multitext-content"/>
 </element>
 </optional>

Technical Notes on LIFT used in FLEx Page 45

4/3/2025

 <optional>
 <element name="label">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <optional>
 <element name="abbrev">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <zeroOrMore>
 <element name="range-element">
 <ref name="range-element-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <!-- == ranges-content -->
 <define name="ranges-content">
 <zeroOrMore>
 <element name="range">
 <ref name="range-content"/>
 </element>
 </zeroOrMore>
 </define>

 <!-- == header-content -->
 <define name="header-content">
 <interleave>
 <optional>
 <element name="description">
 <ref name="multitext-content"/>
 </element>
 </optional>
 <optional>
 <element name="ranges">
 <ref name="ranges-content"/>
 </element>
 </optional>
 <optional>
 <element name="fields">
 <ref name="field-defns-content"/>
 </element>
 </optional>
 </interleave>
 </define>

 <!-- == lift-content -->
 <define name="lift-content">
 <attribute name="version">
 <value>0.13</value>
 </attribute>
 <optional>
 <attribute name="producer"/>
 </optional>
 <optional>
 <element name="header">
 <ref name="header-content"/>
 </element>
 </optional>
 <zeroOrMore>

Technical Notes on LIFT used in FLEx Page 46

4/3/2025

 <element name="entry">
 <ref name="entry-content"/>
 </element>
 </zeroOrMore>
 </define>

 <!-- ================================== start ============================ -->
 <start>
 <element name="lift">
 <ref name="lift-content"/>
 </element>
 </start>
</grammar>

